non real constants More...
Variables | |
constexpr tags::callable_abs | kyosu::abs = {} |
Computes the absolute value of the parameter. | |
constexpr tags::callable_acos | kyosu::acos = {} |
Computes the acosine of the argument. | |
constexpr tags::callable_acosh | kyosu::acosh = {} |
Computes the inverse hyperbolic cosine of the argument. | |
constexpr tags::callable_acospi | kyosu::acospi = {} |
Computes the arc cosine of the argument in \(\pi\) multiples. | |
constexpr tags::callable_acot | kyosu::acot = {} |
Computes the arc cotangent of the argument. | |
constexpr tags::callable_acoth | kyosu::acoth = {} |
Computes the inverse hyperbolic cotangent of the argument. | |
constexpr tags::callable_acotpi | kyosu::acotpi = {} |
Computes the arc cotangent of the argument in \(\pi\) multiples. | |
constexpr tags::callable_acsc | kyosu::acsc = {} |
Computes the arccosecant of the argument. | |
constexpr tags::callable_acsch | kyosu::acsch = {} |
Computes the inverse hyperbolic cosecant of the argument. | |
constexpr tags::callable_acscpi | kyosu::acscpi = {} |
Computes the arc cosecant of the argume!nt in \(\pi\) multiples. | |
constexpr tags::callable_arg | kyosu::arg = {} |
argument. | |
constexpr tags::callable_asec | kyosu::asec = {} |
Computes the arcsecant of the argument. | |
constexpr tags::callable_asech | kyosu::asech = {} |
Computes the inverse hyperbolic secant of the argument. | |
constexpr tags::callable_asecpi | kyosu::asecpi = {} |
Computes the arc secant of the argument in \(\pi\) multiples. | |
constexpr tags::callable_asin | kyosu::asin = {} |
Computes the arcsine of the argument. | |
constexpr tags::callable_asinh | kyosu::asinh = {} |
Computes the inverse hyperbolic sine of the argument. | |
constexpr tags::callable_asinpi | kyosu::asinpi = {} |
Computes the arc sine of the argument in \(\pi\) multiples. | |
constexpr tags::callable_associator | kyosu::associator = {} |
Computes the associator of the three parameters. | |
constexpr tags::callable_atan | kyosu::atan = {} |
Computes the arctangent of the argument. | |
constexpr tags::callable_atanh | kyosu::atanh = {} |
Computes the inverse hyperbolic tangent of the argument. | |
constexpr tags::callable_atanpi | kyosu::atanpi = {} |
Computes the arc tangent of the argument in \(\pi\) multiples. | |
constexpr tags::callable_average | kyosu::average = {} |
Computes the average of the parameters. | |
constexpr tags::callable_beta | kyosu::beta = {} |
Computes the beta function: \(\displaystyle \mathbf{B}(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\) for real or complex entries. | |
constexpr tags::callable_ceil | kyosu::ceil = {} |
Computes the ceil value. | |
constexpr tags::callable_commutator | kyosu::commutator = {} |
Computes the commutator of the two parameters. | |
constexpr tags::callable_complex | kyosu::complex = {} |
Constructs a kyosu::complex. | |
constexpr tags::callable_conj | kyosu::conj = {} |
Computes the conjugate value. | |
constexpr tags::callable_convert | kyosu::convert = {} |
convert to a target typek | |
constexpr tags::callable_cos | kyosu::cos = {} |
Computes the cosine of the argument. | |
constexpr tags::callable_cosh | kyosu::cosh = {} |
Computes the hyperbolic cosine of the argument. | |
constexpr tags::callable_cospi | kyosu::cospi = {} |
Computes the cosine from the argument in \(\pi\) multiples. | |
constexpr tags::callable_cot | kyosu::cot = {} |
Computes the cotangent of the argument. | |
constexpr tags::callable_coth | kyosu::coth = {} |
Computes the hyperbolic cotangent of the argument. | |
constexpr tags::callable_cotpi | kyosu::cotpi = {} |
Computes the cotangent from the argument in \(\pi\) multiples. | |
constexpr tags::callable_csc | kyosu::csc = {} |
Computes the cosecant of the argument. | |
constexpr tags::callable_csch | kyosu::csch = {} |
Computes the hyperbolic cosecant of the argument. | |
constexpr tags::callable_cscpi | kyosu::cscpi = {} |
Computes the cosecant from the argument in \(\pi\) multiples. | |
constexpr tags::callable_cyl_bessel_h1 | kyosu::cyl_bessel_h1 = {} |
Computes the Bessel functions of the third kind \(H^{(1)}\),. | |
constexpr tags::callable_cyl_bessel_h12 | kyosu::cyl_bessel_h12 = {} |
Computes the Bessel functions of the third kind \( H^{(1)} \) and \( H^{(2)} \),. | |
constexpr tags::callable_cyl_bessel_h1_0 | kyosu::cyl_bessel_h1_0 = {} |
Computes the Bessel function of the third kind, \( H^{(1)}_0(x)\),. | |
constexpr tags::callable_cyl_bessel_h1_1 | kyosu::cyl_bessel_h1_1 = {} |
Computes the Bessel function of the third kind, \( H^{(1)}_1(x)\),. | |
constexpr tags::callable_cyl_bessel_h1n | kyosu::cyl_bessel_h1n = {} |
Computes the Bessel/Hankel functions of the third kind, \( H_n^{(1)}(z) = J_n(z)+iY_n(z)\). | |
constexpr tags::callable_cyl_bessel_h2 | kyosu::cyl_bessel_h2 = {} |
Computes the Bessel functions of the third kind \( H^{(2)}_\nu \),. | |
constexpr tags::callable_cyl_bessel_h2_0 | kyosu::cyl_bessel_h2_0 = {} |
Computes the Bessel function of the third kind, \( H^{(2)}_0(x)\). | |
constexpr tags::callable_cyl_bessel_h2_1 | kyosu::cyl_bessel_h2_1 = {} |
Computes the Bessel function of the third kind, \( H^{(2)}_1(x)\),. | |
constexpr tags::callable_cyl_bessel_h2n | kyosu::cyl_bessel_h2n = {} |
Computes the Bessel/Hankel functions of the third kind , \( H_n^{(2)} = J_n(z)-iY_n(z)\). | |
constexpr tags::callable_cyl_bessel_i | kyosu::cyl_bessel_i = {} |
Computes the Modified Bessel functions of the first kind. | |
constexpr tags::callable_cyl_bessel_i0 | kyosu::cyl_bessel_i0 = {} |
Computes the modified Bessel function of the first kind \(I_{0}(x)=J_{0}(ix)\) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_i1 | kyosu::cyl_bessel_i1 = {} |
Computes the modified Bessel function of the first kind, \( I_1(x)= iJ_1(ix) \) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_ik | kyosu::cyl_bessel_ik = {} |
Computes the modified Bessel functions \(I\) and \(K\),. | |
constexpr tags::callable_cyl_bessel_ikn | kyosu::cyl_bessel_ikn = {} |
Computes the Bessel functions of the second kind \(I\) and \(K \)of integral order,. | |
constexpr tags::callable_cyl_bessel_in | kyosu::cyl_bessel_in = {} |
Computes the modified Bessel functions of the first kind \(I_{n}(x)=i^{-n}J_{n }(ix)\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_j | kyosu::cyl_bessel_j = {} |
Computes the Bessel functions of the first kind, \( J_{\nu}(x)=\sum_{p=0}^{\infty}{\frac{(-1)^p}{p!\,\Gamma (p+\nu +1)}}
{\left({x \over 2}\right)}^{2p+\nu }\) extended to the complex plane and cayley_dickson values. | |
constexpr tags::callable_cyl_bessel_j0 | kyosu::cyl_bessel_j0 = {} |
Computes the Bessel function of the first kind, \( J_0(x)=\frac1{\pi }\int _{0}^{\pi}\cos(x\sin \tau)
\,\mathrm {d} \tau \) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_j1 | kyosu::cyl_bessel_j1 = {} |
Computes the Bessel function of the first kind, \( J_1\). | |
constexpr tags::callable_cyl_bessel_jn | kyosu::cyl_bessel_jn = {} |
Computes the Bessel functions of the first kind, \( J_{n}(x)=\sum_{p=0}^{\infty}{\frac{(-1)^p}{p!\,\Gamma (p+n +1)}}
{\left({x \over 2}\right)}^{2p+n }\) extended to the complex plane and cayley_dickson values. | |
constexpr tags::callable_cyl_bessel_k | kyosu::cyl_bessel_k = {} |
Computes the Modified Bessel functions of the second kind. | |
constexpr tags::callable_cyl_bessel_k0 | kyosu::cyl_bessel_k0 = {} |
Computes the modified Bessel function of the second kind, \( K_0(x)=\lim_{\alpha\to 0}{\frac {\pi }{2}}{\frac {I_{-\alpha }(x)-I_{\alpha }(x)}{\sin \alpha \pi }}\). extended to the complex plane and cayley_dickson values. | |
constexpr tags::callable_cyl_bessel_k1 | kyosu::cyl_bessel_k1 = {} |
Computes the Bessel function of the second kind, \( K_1(x)\lim_{\alpha\to 1}{\frac {\pi }{2}}{\frac {I_{-\alpha }(x)-I_{\alpha }(x)}{\sin \alpha \pi }}\) extended to the complex plane and cayley_dickson values. | |
constexpr tags::callable_cyl_bessel_kn | kyosu::cyl_bessel_kn = {} |
Computes the modified Bessel functions of the second kind, \( K_{n}(x)=\lim_{\alpha\to n}{\frac {\pi }{2}}{\frac {I_{-\alpha }(x)-I_{\alpha }(x)}{\sin \alpha \pi }}\). extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_y | kyosu::cyl_bessel_y = {} |
Computes the Bessel functions of the second kind,. | |
constexpr tags::callable_cyl_bessel_y0 | kyosu::cyl_bessel_y0 = {} |
Computes the Bessel function of the second kind, \( Y_0(x)=\lim_{\alpha\to 0}{{\frac {J_{\alpha }(x)\cos(\alpha\pi)-J_{-\alpha }(x)}{\sin(\alpha\pi)}}}\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_y1 | kyosu::cyl_bessel_y1 = {} |
Computes the Bessel function of the second kind, \( Y_1(x)=\lim_{\alpha\to 1}{{\frac {J_{\alpha }(x)\cos(\alpha\pi)-J_{-\alpha }(x)}{\sin(\alpha\pi)}}}\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_cyl_bessel_yn | kyosu::cyl_bessel_yn = {} |
Computes the modified Bessel functions of the second kind, \( Y_n(x)=\lim_{\alpha\to n}{{\frac {J_{\alpha }(x)\cos(\alpha\pi)-J_{-\alpha }(x)}{\sin(\alpha\pi)}}}\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_dec | kyosu::dec = {} |
decrements the argument by 1. | |
constexpr tags::callable_deta | kyosu::deta = {} |
Computes the Dirichlet sums \( \displaystyle \sum_{n = 0}^\infty \frac{(-1)^n}{(kn+1)^z}\). | |
constexpr tags::callable_digamma | kyosu::digamma = {} |
Computes the Digamma function i.e. the logarithmic derivative of the \(\Gamma\) function. | |
constexpr tags::callable_dist | kyosu::dist = {} |
Computes the distance between the two parameters. | |
constexpr tags::callable_dot | kyosu::dot = {} |
Computes elementwise the dot product of the coordinates of the corresponding element. | |
constexpr tags::callable_erf | kyosu::erf = {} |
Computes the error function: \( \displaystyle
\mbox{erf}(x)=\frac{2}{\sqrt\pi}\int_0^{x} e^{-t^2}\mbox{d}t\) or its extension to complex and general cayley-dickson values. | |
constexpr tags::callable_erfcx | kyosu::erfcx = {} |
Computes the normalized complementary error function \( \displaystyle \mbox{erfcx}(x) = e^{x^2} \mbox{erfc}(x)\). | |
constexpr tags::callable_erfi | kyosu::erfi = {} |
Callable object computing The imaginary error function \( \displaystyle \mathrm{erfi}(z) = -i\mathrm{erf}(iz)\). | |
constexpr tags::callable_eta | kyosu::eta = {} |
Computes the Dirichlet sum \( \displaystyle \sum_0^\infty \frac{(-1)^n}{(n+1)^z}\). Sometimes this function is for obvious reasons called the alternative \(\zeta\) function . | |
constexpr tags::callable_exp | kyosu::exp = {} |
Computes the exponential of the argument. | |
constexpr tags::callable_exp10 | kyosu::exp10 = {} |
Computes the base 10 exponential of the argument. | |
constexpr tags::callable_exp2 | kyosu::exp2 = {} |
Computes the base 2 exponential of the argument. | |
constexpr tags::callable_exp_i | kyosu::exp_i = {} |
Computes the exponential of i times the argument. | |
constexpr tags::callable_exp_ipi | kyosu::exp_ipi = {} |
Computes the exponential of \(i\pi\) times the argument. | |
constexpr tags::callable_expm1 | kyosu::expm1 = {} |
Computes the exponential of the argument minus 1. | |
constexpr tags::callable_expmx2 | kyosu::expmx2 = {} |
Computes the exponential of the opposite of the squared argument. | |
constexpr tags::callable_expx2 | kyosu::expx2 = {} |
Computes the exponential of the squared argument. | |
constexpr tags::callable_faddeeva | kyosu::faddeeva = {} |
Callable object computing \(e^{-z^2}\mathrm{erfc}(-iz)\) the scaled complex error func. | |
constexpr tags::callable_fam | kyosu::fam = {} |
Computes fused add multiply. | |
constexpr tags::callable_floor | kyosu::floor = {} |
Computes the floor value. | |
constexpr tags::callable_fma | kyosu::fma = {} |
Computes fused multiply add. | |
constexpr tags::callable_fms | kyosu::fms = {} |
Computes fused multiply add. | |
constexpr tags::callable_fnma | kyosu::fnma = {} |
Computes fused negate multiply add. | |
constexpr tags::callable_fnms | kyosu::fnms = {} |
Computes fused negate multiply sub. | |
constexpr tags::callable_frac | kyosu::frac = {} |
Computes the frac value. | |
constexpr tags::callable_from_angle_axis | kyosu::from_angle_axis = {} |
Callable object computing an an unitary quaternion from an angle value and a 3 dimensionnal axis vector. | |
constexpr tags::callable_fsm | kyosu::fsm = {} |
Computes fused sub multiply. | |
constexpr tags::callable_horner | kyosu::horner = {} |
Implement the horner scheme to evaluate polynomials. | |
constexpr tags::callable_hypot | kyosu::hypot = {} |
Callable object computing the hypot operation. | |
constexpr tags::callable_i | kyosu::i = {} |
Computes the complex number cinf i.e. complex(nan, inf) in the chosen type. | |
constexpr tags::callable_if_else | kyosu::if_else = {} |
Select a value between two arguments based on a logical mask. | |
constexpr tags::callable_ipart | kyosu::imag = {} |
Alias for ipart. | |
constexpr tags::callable_inc | kyosu::inc = {} |
Increments the argument. | |
constexpr tags::callable_ipart | kyosu::ipart = {} |
Extracts the imaginary part of a value. | |
constexpr tags::callable_is_denormal | kyosu::is_denormal = {} |
test if the parameter is denormal. | |
constexpr tags::callable_is_equal | kyosu::is_equal = {} |
retuen true if and only if the two parameters are equal. | |
constexpr tags::callable_is_eqz | kyosu::is_eqz = {} |
test the parameter for equality to zero. | |
constexpr tags::callable_is_finite | kyosu::is_finite = {} |
test if the parameter is finite. | |
constexpr tags::callable_is_pure | kyosu::is_imag = {} |
alias of is_pure | |
constexpr tags::callable_is_infinite | kyosu::is_infinite = {} |
test if the parameter is infinite. | |
constexpr tags::callable_is_nan | kyosu::is_nan = {} |
test if the parameter is nan. | |
constexpr tags::callable_is_nez | kyosu::is_nez = {} |
test the parameter for non zero equality. | |
constexpr tags::callable_is_not_denormal | kyosu::is_not_denormal = {} |
test if the parameter is not denormal. | |
constexpr tags::callable_is_not_equal | kyosu::is_not_equal = {} |
return true if and only if the two parameters are not equal. | |
constexpr tags::callable_is_not_finite | kyosu::is_not_finite = {} |
test if the parameter is not finite. | |
constexpr tags::callable_is_not_infinite | kyosu::is_not_infinite = {} |
test if the parameter is not infinite. | |
constexpr tags::callable_is_not_nan | kyosu::is_not_nan = {} |
test if the parameter is not a Nan. | |
constexpr tags::callable_is_not_real | kyosu::is_not_real = {} |
test if the parameter is not_real. | |
constexpr tags::callable_is_pure | kyosu::is_pure = {} |
test if the parameter is pure. | |
constexpr tags::callable_is_real | kyosu::is_real = {} |
test if the parameter is real. | |
constexpr tags::callable_is_unitary | kyosu::is_unitary = {} |
test if the parameter is unitary (absolute value one). | |
constexpr tags::callable_jpart | kyosu::jpart = {} |
Extracts the \(j\) part of a value. | |
constexpr tags::callable_kpart | kyosu::kpart = {} |
Extracts the \(k\) part of a value. | |
constexpr tags::callable_lambda | kyosu::lambda = {} |
Callable object computing The Dirichlet \( \displaystyle \lambda(z) = \sum_0^\infty \frac{1}{(2n+1)^z}\). | |
constexpr tags::callable_lbeta | kyosu::lbeta = {} |
Computes the natural logarithm of the lbeta function. | |
constexpr tags::callable_ldiv | kyosu::ldiv = {} |
Computes the left division of the two parameters. | |
constexpr tags::callable_lerp | kyosu::lerp = {} |
Computes the linear interpolation. | |
constexpr tags::callable_lipart | kyosu::lipart = {} |
Extracts the li (sixth) part of a value. | |
constexpr tags::callable_ljpart | kyosu::ljpart = {} |
Extracts the lj (seventh) part of a value. | |
constexpr tags::callable_lkpart | kyosu::lkpart = {} |
Extracts the lk (eighth) part of a value. | |
constexpr tags::callable_log | kyosu::log = {} |
Computes the natural logarithm of the argument. | |
constexpr tags::callable_log10 | kyosu::log10 = {} |
Computes the base 10 logarithm of the argument. | |
constexpr tags::callable_log1p | kyosu::log1p = {} |
Computes the natural logarithm of the argument plus 1. | |
constexpr tags::callable_log2 | kyosu::log2 = {} |
Computes the base 2 logarithm of the argument. | |
constexpr tags::callable_log_abs | kyosu::log_abs = {} |
Computes the natural logarithm of the absolute value of the argument. | |
constexpr tags::callable_log_abs_gamma | kyosu::log_abs_gamma = {} |
Computes the log of the modulus of the \(\Gamma\) function of the parameter. | |
constexpr tags::callable_log_gamma | kyosu::log_gamma = {} |
Computes the log of the \(\Gamma\) function. | |
constexpr tags::callable_lpart | kyosu::lpart = {} |
Extracts the l (fifth) part of a value. | |
constexpr tags::callable_lpnorm | kyosu::lpnorm = {} |
Callable object computing the lpnorm operation \( \left(\sum_{i = 0}^n
|x_i|^p\right)^{\frac1p} \). | |
constexpr tags::callable_lrising_factorial | kyosu::lrising_factorial = {} |
Computes the lrising_factorial function: \(\log\frac{\Gamma(x+y)}{\Gamma(x)}\). | |
constexpr tags::callable_manhattan | kyosu::manhattan = {} |
Callable object computing the manhattan operation. | |
constexpr tags::callable_maxabs | kyosu::maxabs = {} |
Callable object computing the maxabs operation. | |
constexpr tags::callable_maxmag | kyosu::maxmag = {} |
Callable object computing the maxmag operation. | |
constexpr tags::callable_minabs | kyosu::minabs = {} |
Callable object computing the minabs operation. | |
constexpr tags::callable_minmag | kyosu::minmag = {} |
Callable object computing the minmag operation. | |
constexpr tags::callable_minus | kyosu::minus = {} |
Computes the opposite value. | |
constexpr tags::callable_muli | kyosu::muli = {} |
Computes the value of the parameter multiplied by i on the left side. For real complex and quaternion the computation is an optimization over the call to * operator. | |
constexpr tags::callable_mulmi | kyosu::mulmi = {} |
Computes the value of the parameter multiplied by i on the left side. For real complex and quaternion the computation is an optimization over the call to * operator. | |
constexpr tags::callable_nearest | kyosu::nearest = {} |
Computes the nearest value. | |
constexpr tags::callable_negmaxabs | kyosu::negmaxabs = {} |
Callable object computing the negmaxabs operation. | |
constexpr tags::callable_negminabs | kyosu::negminabs = {} |
Callable object computing the negminabs operation. | |
constexpr tags::callable_oneminus | kyosu::oneminus = {} |
Computes the value one minus the argument. | |
constexpr tags::callable_pow | kyosu::pow = {} |
Computes the computing the pow operation \(x^y\). | |
constexpr tags::callable_pow1p | kyosu::pow1p = {} |
Computes the computing the pow1p operation \((x+1)^y\). | |
constexpr tags::callable_pow_abs | kyosu::pow_abs = {} |
Computes the computing the pow_abs operation \(|x|^y\). | |
constexpr tags::callable_powm1 | kyosu::powm1 = {} |
Computes the computing the powm1 operation \(x^y-1\). | |
constexpr tags::callable_proj | kyosu::proj = {} |
Callable object computing proj(x), the projection of the cayley_dickson number z onto the (hyper) Riemann sphere. | |
constexpr tags::callable_pure | kyosu::pure = {} |
Extracts the imaginary part of a value. | |
constexpr tags::callable_quaternion | kyosu::quaternion = {} |
Constructs a kyosu::quaternion. | |
constexpr tags::callable_radinpi | kyosu::radinpi = {} |
Computes the parameter divided by \(\pi\). | |
constexpr tags::callable_real | kyosu::real = {} |
Extracts the real part of a value. | |
constexpr tags::callable_rec | kyosu::rec = {} |
Computes the inverse of the argument. | |
constexpr tags::callable_reldist | kyosu::reldist = {} |
Computes the relative distance between the two parameters. | |
constexpr tags::callable_reverse_horner | kyosu::reverse_horner = {} |
Implement the reverse_horner scheme to evaluate polynomials. | |
constexpr tags::callable_right_horner | kyosu::right_horner = {} |
Implement the right_horner scheme to evaluate polynomials. | |
constexpr tags::callable_right_reverse_horner | kyosu::right_reverse_horner = {} |
Implement the right_reverse_horner scheme to evaluate polynomials. | |
constexpr tags::callable_rising_factorial | kyosu::rising_factorial = {} |
Computes the rising_factorial function: \(\frac{\Gamma(x+y)}{\Gamma(x)}\). | |
constexpr tags::callable_sec | kyosu::sec = {} |
Computes the secant of the argument. | |
constexpr tags::callable_sech | kyosu::sech = {} |
Computes the hyperbolic secant of the argument. | |
constexpr tags::callable_secpi | kyosu::secpi = {} |
Computes the secant of the argument in \(\pi\) multiples. | |
constexpr tags::callable_sign | kyosu::sign = {} |
Computes tne normalized value z/abs(z) if z is not zero else 0. | |
constexpr tags::callable_sin | kyosu::sin = {} |
Computes the sine of the argument. | |
constexpr tags::callable_sinc | kyosu::sinc = {} |
Computes the sine cardinal of the argument. | |
constexpr tags::callable_sincos | kyosu::sincos = {} |
Computes simultaneously the sine and cosine of the argument. | |
constexpr tags::callable_sinh | kyosu::sinh = {} |
Computes the hyperbolic sine of the argument. | |
constexpr tags::callable_sinhc | kyosu::sinhc = {} |
Computes the hyperbolic sine cardinal of the argument. | |
constexpr tags::callable_sinhcosh | kyosu::sinhcosh = {} |
Computes simultaneously the hyperbolic sine and cosine of the argument. | |
constexpr tags::callable_sinpi | kyosu::sinpi = {} |
Computes the sine of the argument in \(\pi\) multiples. | |
constexpr tags::callable_sinpicospi | kyosu::sinpicospi = {} |
Computes simultaneously the sine and cosine of the argument in \(\pi\) multiples. | |
constexpr tags::callable_slerp | kyosu::slerp = {} |
Computes the spherical interpolation between unitary quaternions. | |
constexpr tags::callable_sph_bessel_h1_0 | kyosu::sph_bessel_h1_0 = {} |
Computes the spherical Bessel/hankel functions of the third kind, \( h_0^{(1)}(z) = j_1(z)+iy_1(z)\). | |
constexpr tags::callable_sph_bessel_h1_1 | kyosu::sph_bessel_h1_1 = {} |
Computes the spherical Bessel/hankel functions of the third kind, \( h_1^{(1)}(z) = j_1(z)+iy_1(z)\). | |
constexpr tags::callable_sph_bessel_h1n | kyosu::sph_bessel_h1n = {} |
Computes the spherical Bessel/hankel functions of the third kind, \( h_n^{(1)}(z) = j_n(z)+iy_n(z)\). | |
constexpr tags::callable_sph_bessel_h2_0 | kyosu::sph_bessel_h2_0 = {} |
Computes the spherical Bessel/hankel functions of the third kind, \( h_0^{(2)}(z) = j_0(z)-iy_0(z)\). | |
constexpr tags::callable_sph_bessel_h2_1 | kyosu::sph_bessel_h2_1 = {} |
Computes the spherical Bessel/hankel functions of the third kind, \( h_1^{(2)}(z) = j_1(z)-iy_1(z)\). | |
constexpr tags::callable_sph_bessel_h2n | kyosu::sph_bessel_h2n = {} |
Computes the spherical Bessel/hankel functions of the third kind, \( h_n^{(2)}(z) = j_n(z)-iy_n(z)\). | |
constexpr tags::callable_sph_bessel_i1_0 | kyosu::sph_bessel_i1_0 = {} |
Computes the Bessel function, \( i_0^{(1)}(z) = j_n(iz)\) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_i1_1 | kyosu::sph_bessel_i1_1 = {} |
Computes the Bessel function, \( i_1^{(1)}(z) = -i j_1(iz)\) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_i1n | kyosu::sph_bessel_i1n = {} |
Computes the spherical Bessel functions \( i_n^{(1)}(z) = i^{-n}j_n(iz)\). | |
constexpr tags::callable_sph_bessel_i2_0 | kyosu::sph_bessel_i2_0 = {} |
Computes the Bessel function, \( i_0^{(2)}(z) = -i y_n(iz)\) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_i2_1 | kyosu::sph_bessel_i2_1 = {} |
Computes the Bessel function, \( i_1^{(2)}(z) = -y_1(iz)\) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_i2n | kyosu::sph_bessel_i2n = {} |
Computes the spherical Bessel functions \( i_n^{(2)}(z) = i^{-n-1}y_n(iz)\). | |
constexpr tags::callable_sph_bessel_j0 | kyosu::sph_bessel_j0 = {} |
Computes the Bessel function of the first kind, \( j_0(x)=\sin z/z \) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_jn | kyosu::sph_bessel_jn = {} |
Computes the spherical Bessel functions of the first kind \(j_{n}(x)\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_k0 | kyosu::sph_bessel_k0 = {} |
Computes the spherical Bessel function of the first kind, \( k_0(x)= \pi e^{-z}/(2z) \) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_k1 | kyosu::sph_bessel_k1 = {} |
Computes the spherical Bessel function of the first kind, \( k_1(x)= (\pi/2) e^{-z}(1/z+1/z^2)\) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_kn | kyosu::sph_bessel_kn = {} |
Computes the spherical Bessel functions \(k_{n}(x)\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_y0 | kyosu::sph_bessel_y0 = {} |
Computes the spherical Bessel function of the first kind, \( y_0(x)=\cos z/z \) extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sph_bessel_yn | kyosu::sph_bessel_yn = {} |
Computes the spherical Bessel functions of the first kind \(y_{n}(x)\), extended to the complex plane and cayley_dickson algebras. | |
constexpr tags::callable_sqr | kyosu::sqr = {} |
Computes the square value. | |
constexpr tags::callable_sqr_abs | kyosu::sqr_abs = {} |
Computes the squared absolute value of the parameter. | |
constexpr tags::callable_sqrt | kyosu::sqrt = {} |
Computes a square root value. | |
constexpr tags::callable_tan | kyosu::tan = {} |
Computes the tangent of the argument. | |
constexpr tags::callable_tanh | kyosu::tanh = {} |
Computes the hyperbolic tangent of the argument. | |
constexpr tags::callable_tanpi | kyosu::tanpi = {} |
Computes the tangent of the argument in \(\pi\) multiples. | |
constexpr tags::callable_tgamma | kyosu::tgamma = {} |
Computes \(\Gamma(z)\)r. | |
constexpr tags::callable_trunc | kyosu::trunc = {} |
Computes the trunc value. | |
constexpr tags::callable_zeta | kyosu::zeta = {} |
Computes the Riemann \( \displaystyle\zeta(z)=\sum_0^\infty \frac{1}{(n+1)^z}\). | |
constexpr tags::callable_airy | kyosu::airy = {} |
Computes simultaneously the airy functions \(Ai\) and \(Bi\). | |