kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ associator

kyosu::associator = eve::functor<associator_t>
inlineconstexpr

Computes the associator of the three parameters.

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
Regular call
constexpr auto associator(auto z0, auto z1, auto z2) noexcept;
Semantic modifyier
constexpr auto associator[pedantic](auto z0, auto z1, auto z2) noexcept;
}
constexpr auto associator
Computes the associator of the three parameters.
Definition: associator.hpp:71
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z0, z1, z2: Values to process. (Can be a mix of cayley-dickson and real floating values).

Return value

  1. Returns the difference z0*(z1*z2)-(z0*z1)*z2. (always exactly zero up to quaternion)
  2. Same, but always do the computation. (up to quaternions, non zero result is merely the floating point associativity default)

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using e_t = float;
std::cout << "Real: "<< "\n";
e_t e0(1);
e_t e1(2);
e_t e2(3);
std::cout << e0 << ", " << e1 << ", " << e2<< " -> " << associator(e0, e1, e2) << "\n";
std::cout << "Complex: "<< "\n";
c_t c0(1, 5);
c_t c1(5, 9);
c_t c2(-1, 4);
std::cout << c0 << ", " << c1 << ", " << c2 << " -> " << associator(c0, c1, c2) << "\n";
std::cout << "Quaternion: "<< "\n";
q_t q0(1, 5, -2, 3);
q_t q1(5, 9, 6, 7);
q_t q2(-3, 6, -1, 0);
std::cout << q0 << ", " << q1 << ", " << q2 << " -> " << associator(q0, q1, q2) << "\n";
std::cout << "Octonion: "<< "\n";
o_t o0(1, 5, -2, 3, 4, 8, 13, 1);
o_t o1(5, 9, 6, 7, 6, -4, -1, 2);
o_t o2(-3, 6, -1, 0, 4, 5, -8, 2);
std::cout << o0 << ", " << o1 << ", " << o2 << " -> " << associator(o0, o1, o2) << "\n";
std::cout << "Mixed: "<< "\n";
std::cout << kyosu::associator(c0, o1, o2) << std::endl;
std::cout << kyosu::associator(o0, o1, e0) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 4, T > quaternion_t
Type alias for quaternion numbers.
Definition: quaternion.hpp:24
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27
as_cayley_dickson_n_t< 8, T > octonion_t
Type alias for octonion numbers.
Definition: octonion.hpp:23