Computes the Dirichlet sums \( \displaystyle \sum_{n = 0}^\infty \frac{(-1)^n}{(kn+1)^z}\).
Returns the Dirichlet sum \( \displaystyle \sum_{n = 0}^\infty \frac{(-1)^n}{(kn+1)^z}\)
#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.6f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
std::cout
<< "---- simd" << std::endl
<< "<- z = " << z << std::endl
<<
"-> deta(1, z) = " <<
deta(1u, z) << std::endl
<<
"-> deta(2, z) = " <<
deta(2u, z) << std::endl
<<
"-> deta(3, z) = " <<
deta(3u, z) << std::endl
<<
"-> deta(2, 0.2)= " <<
deta(2u, 0.2)<< std::endl
<<
"-> deta(1, 0.2)= " <<
deta(1u, 0.2)<< std::endl
<<
"-> deta(1, z) = " <<
deta(1u, zf) << std::endl
<<
"-> deta(2, z) = " <<
deta(2u, zf) << std::endl
<<
"-> deta(3, z) = " <<
deta(3u, zf) << std::endl
<<
"-> deta(2, 0.2)= " <<
deta(2u, 0.2f)<< std::endl
<<
"-> deta(1, 0.2)= " <<
deta(1u, 0.2f)<< std::endl
<< "<- zc = " << zc << std::endl
<<
"-> deta(1, zc) = " <<
deta(1u, zc)<< std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27