kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ deta

kyosu::deta = {}
inlineconstexpr

Computes the Dirichlet sums \( \displaystyle \sum_{n = 0}^\infty \frac{(-1)^n}{(kn+1)^z}\).

Defined in Header

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
constexpr auto deta(unsigned_scalar_value auto k, auto z) noexcept;
}
constexpr tags::callable_deta deta
Computes the Dirichlet sums .
Definition: deta.hpp:77
Main KYOSU namespace.
Definition: types.hpp:14

Parameters

  • k : scalar unsigned value, parameter of the sum.
  • z : complex or real value to process.

Return value

Returns the Dirichlet sum \( \displaystyle \sum_{n = 0}^\infty \frac{(-1)^n}{(kn+1)^z}\)

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using kyosu::deta;
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.6f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
auto z = kyosu::complex_t<double>(1.0, 0.0);
auto zf= kyosu::complex_t<float >(1.0, 0.0);
std::cout
<< "---- simd" << std::endl
<< "<- z = " << z << std::endl
<< "-> deta(1, z) = " << deta(1u, z) << std::endl
<< "-> deta(2, z) = " << deta(2u, z) << std::endl
<< "-> deta(3, z) = " << deta(3u, z) << std::endl
<< "-> deta(2, 0.2)= " << deta(2u, 0.2)<< std::endl
<< "-> deta(1, 0.2)= " << deta(1u, 0.2)<< std::endl
<< "-> deta(1, z) = " << deta(1u, zf) << std::endl
<< "-> deta(2, z) = " << deta(2u, zf) << std::endl
<< "-> deta(3, z) = " << deta(3u, zf) << std::endl
<< "-> deta(2, 0.2)= " << deta(2u, 0.2f)<< std::endl
<< "-> deta(1, 0.2)= " << deta(1u, 0.2f)<< std::endl
<< "<- zc = " << zc << std::endl
<< "-> deta(1, zc) = " << deta(1u, zc)<< std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27