Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{J}(x, y) = \frac32 \int_{0}^{\infty}
\scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\).
#include <eve/module/elliptic.hpp>
namespace eve
{
constexpr auto ellint_rj(
auto x,
auto y,
auto z,
auto p)
noexcept;
constexpr auto ellint_rj[threshold = tol](
auto x,
auto y,
auto z,
auto p)
noexcept;
constexpr auto ellint_rj[conditional_expr
auto c](
auto x,
auto y,
auto z,
auto p)
noexcept;
constexpr auto ellint_rj[logical_value
auto m](
auto x,
auto y,
auto z,
auto p)
noexcept;
}
constexpr auto ellint_rj
Computes the Carlson's elliptic integral .
Definition: ellint_rj.hpp:93
Parameters
x
, y
, z
: floating real arguments.
p
: floating real arguments.
c
: Conditional expression masking the operation.
m
: Logical value masking the operation.
Return value
- the value of the \(\mathbf{R}_\mathbf{J}\) Carlson elliptic integral: \( \frac32 \int_{0}^{\infty}
\scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\;\mathrm{d}t\) is returned with relative error less in magnitude than tol (default to eps), The integral is well defined if
x
, y
, z
lie in the complex plane cut along the nonpositive real axis, with the exception that at at most one of x
, y
, z
can be 0.
- The operation is performed conditionnaly