kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ ellint_rj

kyosu::ellint_rj = eve::functor<ellint_rj_t>
inlineconstexpr

Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{J}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\).

Header file

#include <eve/module/elliptic.hpp>

Callable Signatures

namespace eve
{
// Regular overload
constexpr auto ellint_rj(auto x, auto y, auto z, auto p) noexcept; // 1
// semantic modifier
constexpr auto ellint_rj[threshold = tol](auto x, auto y, auto z, auto p) noexcept; // 1
// Lanes masking
constexpr auto ellint_rj[conditional_expr auto c](auto x, auto y, auto z, auto p) noexcept; // 2
constexpr auto ellint_rj[logical_value auto m](auto x, auto y, auto z, auto p) noexcept; // 2
}
constexpr auto ellint_rj
Computes the Carlson's elliptic integral .
Definition: ellint_rj.hpp:93

Parameters

  • x, y, z: floating real arguments.
  • p: floating real arguments.
  • c: Conditional expression masking the operation.
  • m: Logical value masking the operation.

Return value

  1. the value of the \(\mathbf{R}_\mathbf{J}\) Carlson elliptic integral: \( \frac32 \int_{0}^{\infty} \scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\;\mathrm{d}t\) is returned with relative error less in magnitude than tol (default to eps), The integral is well defined if x, y, z lie in the complex plane cut along the nonpositive real axis, with the exception that at at most one of x, y, z can be 0.
  2. The operation is performed conditionnaly

External references

Example