|
inlineconstexpr |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{J}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\).
Parameters
x
, y
, z
: floating real arguments.p
: floating real arguments.c
: Conditional expression masking the operation.m
: Logical value masking the operation.Return value
x
, y
, z
lie in the complex plane cut along the nonpositive real axis, with the exception that at at most one of x
, y
, z
can be 0.