kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ bessel_i

kyosu::bessel_i = eve::functor<bessel_i_t>
inlineconstexpr

Computes the spherical or cylindrical modified Bessel functions of the second kind, extended to the complex plane and cayley_dickson algebras.

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<eve;scalar_value N, kyosu::concepts::cayley_dickson_like T> constexpr auto bessel_i(N n, T z) noexcept; //1
template<eve;scalar_value N, kyosu::concepts::complex_like T, size_t S> constexpr auto bessel_i(N n, T z, std::span<Z, S> cis) noexcept; //2
template<eve;scalar_value N, kyosu::concepts::cayley_dickson_like T> constexpr auto bessel_i[spherical](N n, T z) noexcept; //3
template<eve;scalar_value N, kyosu::concepts::complex_like T, size_t S> constexpr auto bessel_i[spherical](N n, T z, std::span<Z, S> sis) noexcept; //4
}
constexpr auto bessel_i
Computes the spherical or cylindrical modified Bessel functions of the second kind,...
Definition: bessel_i.hpp:86
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • n: scalar order (integral or floating)
  • z: Value to process.
  • sis, cis : std::span of T

Return value

  1. returns \(I_n\)(z) (cylindrical).
  2. Same as 1, but cis is filled by the lesser orders.
  3. returns \(i_n\)(z) (spherical).
  4. Same as 3, but sis is filled by the lesser orders.
Note
  • Let \( i = \lfloor |n| \rfloor \) and \( j=|n|-i\). If \(n\) is positive the lesser order are \((\pm j, \pm(j+1), \dots, \pm(j+i)) \) with \(+\) sign if \(n\) is positive and \(-\) sign if \(n\) is negative.
  • The span parameters are filled according the minimum of their allocated size and \(i\).
  • cylindical option can be used and its result is identical to the regular call (no option).

External references

Example