Computes the Dirichlet sum \( \displaystyle \sum_0^\infty \frac{(-1)^n}{(n+1)^z}\). Sometimes this function is for obvious reasons called the alternative \(\zeta\) function .
{
template<
unsigned_scalar_value K, eve::ordered_value T>
constexpr auto eta(T z)
noexcept;
template<
unsigned_scalar_value K, kyosu::concepts::cayley_dickson T>
constexpr auto eta(T z)
noexcept;
}
constexpr tags::callable_eta eta
Computes the Dirichlet sum . Sometimes this function is for obvious reasons called the alternative f...
Definition: eta.hpp:78
Main KYOSU namespace.
Definition: types.hpp:14
Returns the Dirichlet alternating zeta function: \( \displaystyle \sum_0^\infty \frac{(-1)^n}{(n+1)^z}\)
#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
wide_ft ref2 = { 0.0, 1.0, 2.0, 3.0};
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<<
"-> eta(ref2) = " <<
kyosu::eta(ref2) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27