kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ lrising_factorial

kyosu::lrising_factorial = {}
inlineconstexpr

Computes the lrising_factorial function: \(\log\frac{\Gamma(x+y)}{\Gamma(x)}\).

Defined in Header

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
auto lrising_factorial(auto x,auto y) noexcept;
}
constexpr tags::callable_lrising_factorial lrising_factorial
Computes the lrising_factorial function: .
Definition: lrising_factorial.hpp:73
Main KYOSU namespace.
Definition: types.hpp:14

Parameters

  • x,y : Values to process.

Return value

Computes the logarithm of rising Factorial i.e. \(\log\frac{\Gamma(x+y)}{\Gamma(x)}\).

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using e_t = float;
using we_t = eve::wide<float, eve::fixed<2>>;
using wc_t = eve::wide<kyosu::complex_t<float>, eve::fixed<2>>;
std::cout << "Real: "<< "\n";
e_t e0(1);
e_t e1(2);
std::cout << e0 << ", " << e1 << " -> " << lrising_factorial(e0, e1) << "\n";
std::cout << e0 << ", " << e0 << " -> " << lrising_factorial(e0, e0) << "\n";
we_t we0(e0);
we_t we1(e1);
std::cout << we0 << ", " << we1 << " -> " << lrising_factorial(we0, we1) << "\n";
std::cout << "Complex: "<< "\n";
c_t c0(1, 5);
c_t c1(5, 9);
std::cout << c0 << ", " << c1 << " -> " << lrising_factorial(c0, c1) << "\n";
std::cout << c0 << ", " << c0 << " -> " << lrising_factorial(c0, c0) << "\n";
wc_t wc0(c0, c1);
wc_t wc1(c1, c1);
std::cout << wc0 << ", " << wc1 << " -> " << lrising_factorial(wc0, wc1) << "\n";
return 0;
}
as_cayley_dickson_n_t< 4, T > quaternion_t
Type alias for quaternion numbers.
Definition: quaternion.hpp:27
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27