Loading [MathJax]/extensions/tex2jax.js
kyosu v0.1.0
Complex Without Complexes
 
All Classes Namespaces Functions Variables Typedefs Modules Pages Concepts
Loading...
Searching...
No Matches

◆ acot

kyosu::acot = eve::functor<acot_t>
inlineconstexpr

Computes the arc cotangent of the argument.

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<kyosu::concepts::cayley_dickson T> constexpr T acot(T z) noexcept;
}
constexpr auto acot
Computes the arc cotangent of the argument.
Definition: acot.hpp:68
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z: Value to process.

Return value

  • A real typed input z calls eve::acot(z) and so returns the same type as the input.
  • For complex input, returns elementwise the complex principal value of the arc cotangent of the input as the arc tangent of the inverse of the input.
  • For other general cayley_dickson input, returns \(I_z \mathrm{acoth}(z I_z)\) where \(I_z = \frac{\underline{z}}{|\underline{z}|}\) and \(\underline{z}\) is the pure part of \(z\).

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
wide_ft ref2 = { 0.0, 1.0, 2.0, 3.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "-> acot(zc) = " << kyosu::acot(zc)<< std::endl
<< "-> acot(ref2) = " << kyosu::acot(ref2) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27