kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ acos

kyosu::acos = eve::functor<acos_t>
inlineconstexpr

Computes the arc cosine of the argument.

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<eve::floating_ordered_value T> constexpr auto acos(T z) noexcept; //1
template<kyosu::concepts::complex T> constexpr auto atan(T z) noexcept; //2
template<kyosu::concepts::cayley_dickson T> constexpr auto acos(T z) noexcept; //3
}
constexpr auto acos
Computes the arc cosine of the argument.
Definition: acos.hpp:93
constexpr auto atan
Computes the arctangent of the argument.
Definition: atan.hpp:90
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z: Value to process.

Return value

  1. a real typed input z is treated as if complex(z) was entered.
  2. Returns elementwise the complex principal value of the arc cosine of the input. Branch cuts exist outside the interval \([-1, +1]\) along the real axis.
    • for every z: acos(conj(z)) == conj(acos(z))
    • If z is \(\pm0\), the result is \(\pi/2\)
    • If z is \(i \textrm{NaN}\), the result is \(\pi/2+ i \textrm{NaN}\)
    • If z is \(x+i\infty\) (for any finite x), the result is \(\pi/2-i\infty\)
    • If z is \(x+i \textrm{NaN}\) (for any nonzero finite x), the result is \(\textrm{NaN}+i \textrm{NaN}\).
    • If z is \(-\infty+i y\) (for any positive finite y), the result is \(\pi-i\infty\)
    • If z is \(+\infty+i y\) (for any positive finite y), the result is \(+0-i\infty\)
    • If z is \(-\infty+i +\infty\), the result is \(3\pi/4-i\infty\)
    • If z is \(\infty+i +\infty\), the result is \(\pi/4-i\infty\)
    • If z is \(\pm\infty+i \textrm{NaN}\), the result is \(\textrm{NaN} \pm i\infty\) (the sign of the imaginary part is unspecified)
    • If z is \(\textrm{NaN}+i y\) (for any finite y), the result is \(\textrm{NaN}+i \textrm{NaN}\)
    • If z is \(\textrm{NaN}+i\infty\), the result is \(\textrm{NaN}-i\infty\)
    • If z is \(\textrm{NaN}+i \textrm{NaN}\), the result is \(\textrm{NaN}+i \textrm{NaN}\)
  3. Returns \(I_z \mathrm{acosh}(z)\) where \(I_z = \frac{\underline{z}}{|\underline{z}|}\) and \(\underline{z}\) is the pure part of \(z\).

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
wide_ft ref2 = { 0.0, 1.0, 2.0, 3.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "-> acos(zc) = " << kyosu::acos(zc)<< std::endl
<< "-> acos(ref2) = " << kyosu::acos(ref2) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27