kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ atanh

kyosu::atanh = eve::functor<atanh_t>
inlineconstexpr

Computes the inverse hyperbolic tangent of the argument.

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<eve::floating_ordered_value T> constexpr auto atanh(T z) noexcept; //1
template<kyosu::concepts::complex T> constexpr auto atanh(T z) noexcept; //2
template<kyosu::concepts::cayley_dickson T> constexpr auto atanh(T z) noexcept; //3
}
constexpr auto atanh
Computes the inverse hyperbolic tangent of the argument.
Definition: atanh.hpp:89
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z: Value to process.

Return value

  1. a real input z is treated as if complex(z) was entered.
  2. Returns the complex inverse hyperbolic tangent of z, in the range of a half-strip mathematically unbounded along the real axis and in the interval \(i\times[-\pi/2, \pi/2]\) along the imaginary axis.
    • for every z: atanh(conj(z)) == conj(atanh(z))
    • for every z: atanh(-z) == -atanh(z)
    • If z is \(+0\), the result is \(+0\)
    • If z is \(NaN\), the result is \(NaN\)
    • If z is \(+1\), the result is \(+\infty\)
    • If z is \(x+i \infty\) (for any finite positive x), the result is \(+0,\pi/2\)
    • If z is \(x+i NaN\) (for any finite nonzero x), the result is \(NaN+i NaN\)
    • If z is \(+\infty+i y\) (for any finite positive y), the result is \(i \pi/2\)
    • If z is \(+\infty+i \infty\), the result is \(i \pi/2\)
    • If z is \(+\infty+i NaN\), the result is \(i NaN\)
    • If z is \(NaN+i y\) (for any finite y), the result is \(NaN+i NaN\)
    • If z is \(NaN+i \infty\), the result is \(i \pi/2\) (the sign of the real part is unspecified)
    • If z is \(NaN+i NaN\), the result is \(NaN+i NaN\)
  3. Returns \((\log(1+z)-\log(1-z))/2\).

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
wide_ft ref2 = { 0.0, 1.0, 2.0, 3.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "-> atanh(zc) = " << kyosu::atanh(zc)<< std::endl
<< "-> atanh(ref2) = " << kyosu::atanh(ref2) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27