|
inlineconstexpr |
Callable object computing The Dirichlet \( \displaystyle \lambda(z) = \sum_0^\infty \frac{1}{(2n+1)^z}\).
This function can be extended to the whole complex plane as \(\lambda(z) = \zeta(z)(1-2^{-z})\) (where \(\zeta\) is the Riemann zeta function). It coincides with the serie where the serie converges. However for z = 1
the result is \(\infty\). The usual extension mechanism is used for general Cayley-dickson input values.
Parameters
z
: cayley_dickson or real value to process.Return value
Returns the Dirichlet sum \( \displaystyle \sum_0^\infty \frac{1}{(2n+1)^z}\)