|
inlineconstexpr |
Callable object computing The Dirichlet \displaystyle \lambda(z) = \sum_0^\infty \frac{1}{(2n+1)^z}.
This function can be extended to the whole complex plane as \lambda(z) = \zeta(z)(1-2^{-z}) (where \zeta is the Riemann zeta function). It coincides with the serie where the serie converges. However for z = 1
the result is \infty. The usual extension mechanism is used for general Cayley-dickson input values.
Parameters
z
: cayley_dickson or real value to process.Return value
Returns the Dirichlet sum \displaystyle \sum_0^\infty \frac{1}{(2n+1)^z}