kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ lambda

kyosu::lambda = {}
inlineconstexpr

Callable object computing The Dirichlet \( \displaystyle \lambda(z) = \sum_0^\infty \frac{1}{(2n+1)^z}\).

This function can be extended to the whole complex plane as \(\lambda(z) = \zeta(z)(1-2^{-x})\) (where \(\zeta\) is the Riemann zeta function). It coincides with the serie where the serie converges. However for z = 1 the result is \(\infty\). The usual extension mechanism is used for general Cayleyâ-dickson values.

Defined in Header

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<unsigned_scalar_value K, eve::ordered_value T> constexpr auto lambda(T z) noexcept; //1
template<unsigned_scalar_value K, kyosu::concepts::cayley-dickson T> constexpr auto lambda(T z) noexcept; //2
}
constexpr tags::callable_lambda lambda
Callable object computing The Dirichlet .
Definition: lambda.hpp:82
Main KYOSU namespace.
Definition: types.hpp:14

Parameters

  • z : complex or real value to process.

Return value

Returns the Dirichlet sum \( \displaystyle \sum_0^\infty \frac{1}{(2n+1)^z}\)

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
wide_ft ref2 = { 0.0, 1.0, 2.0, 3.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "<- ref2 = " << ref2 << std::endl
<< "-> lambda(zc) = " << kyosu::lambda(zc)<< std::endl
<< "-> lambda(ref2) = " << kyosu::lambda(ref2) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27