Computes the Riemann \( \displaystyle\zeta(z)=\sum_0^\infty \frac{1}{(n+1)^z}\).
Returns the Dirichlet zeta sum: \( \displaystyle \sum_0^\infty \frac{1}{(n+1)^z}\)
#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<<
"-> zeta(ref1) = " <<
kyosu::zeta(ref1) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27