kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ zeta

kyosu::zeta = eve::functor<zeta_t>
inlineconstexpr

Computes the Riemann \( \displaystyle\zeta(z)=\sum_0^\infty \frac{1}{(n+1)^z}\).

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<eve::floating_ordered_value T> constexpr auto zeta(T z) noexcept;
template<kyosu::concepts::complex T> constexpr auto zeta(T z) noexcept;
}
constexpr auto zeta
Computes the Riemann .
Definition: zeta.hpp:78
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z : value to process.

Return value

Returns the Dirichlet zeta sum: \( \displaystyle \sum_0^\infty \frac{1}{(n+1)^z}\)

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "-> zeta(zc) = " << kyosu::zeta(zc) << std::endl
<< "-> zeta(ref1) = " << kyosu::zeta(ref1) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27