kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ rising_factorial

kyosu::rising_factorial = eve::functor<rising_factorial_t>
inlineconstexpr

Computes the rising_factorial function: \(\displaystyle \frac{\Gamma(a+x)}{\Gamma(a)}\).

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
auto rising_factorial(auto x, auto y) noexcept;
}
constexpr auto rising_factorial
Computes the rising_factorial function: .
Definition: rising_factorial.hpp:66
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • x,y : Values to process. Can be a mix of cayley_dickson and real floating values.

Return value

\(\displaystyle \frac{\Gamma(a+x)}{\Gamma(a)}\) is returned.

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using e_t = float;
using we_t = eve::wide<float, eve::fixed<2>>;
using wc_t = eve::wide<kyosu::complex_t<float>, eve::fixed<2>>;
std::cout << "Real: "<< "\n";
e_t e0(1);
e_t e1(2);
std::cout << e0 << ", " << e1 << " -> " << rising_factorial(e0, e1) << "\n";
std::cout << e0 << ", " << e0 << " -> " << rising_factorial(e0, e0) << "\n";
we_t we0(e0);
we_t we1(e1);
std::cout << we0 << ", " << we1 << " -> " << rising_factorial(we0, we1) << "\n";
std::cout << "Complex: "<< "\n";
c_t c0(1, 5);
c_t c1(5, 9);
std::cout << c0 << ", " << c1 << " -> " << rising_factorial(c0, c1) << "\n";
std::cout << c0 << ", " << c0 << " -> " << rising_factorial(c0, c0) << "\n";
wc_t wc0(c0, c1);
wc_t wc1(c1, c1);
std::cout << wc0 << ", " << wc1 << " -> " << rising_factorial(wc0, wc1) << "\n";
return 0;
}
as_cayley_dickson_n_t< 4, T > quaternion_t
Type alias for quaternion numbers.
Definition: quaternion.hpp:24
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27