kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ asinh

kyosu::asinh = eve::functor<asinh_t>
inlineconstexpr

Computes the inverse hyperbolic sine of the argument.

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
template<eve::floating_ordered_value T> constexpr auto asinh(T z) noexcept; //1
template<kyosu::concepts::complex T> constexpr auto asinh(T z) noexcept; //2
template<kyosu::concepts::cayley_dickson T> constexpr auto asinh(T z) noexcept; //3
}
constexpr auto asinh
Computes the inverse hyperbolic sine of the argument.
Definition: asinh.hpp:98
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z: Value to process.

Return value

  1. A real type input z calls eve::asinh(z) and so returns the same type as input.
  2. Returns the complex inverse hyperbolic sine of z, with branch cuts outside the interval \(i\times[-\pi/2, \pi/2]\) along the imaginary axis.
    • for every z: asinh(conj(z)) ==conj(asinh(z))
    • for every z: asinh(-z) == -asinh(z)
    • If z is \(+0\), the result is \(+0\)
    • If z is \(x+i \infty\) (for any positive finite x), the result is \(\infty+i \pi/2\)
    • If z is \(x, \textrm{NaN}\) (for any finite x), the result is \( \textrm{NaN}+ i \textrm{NaN}\)
    • If z is \(\infty+ iy\) (for any positive finite y), the result is \(\infty+i 0\)
    • If z is \(\infty+i \infty\), the result is \(\infty+ i\pi/4\)
    • If z is \(\infty+ i \textrm{NaN}\), the result is \(\infty+ i \textrm{NaN}\)
    • If z is \( \textrm{NaN}+i 0\), the result is \( \textrm{NaN}+i 0\)
    • If z is \( \textrm{NaN}+ iy\) (for any finite nonzero y), the result is \( \textrm{NaN}+ i \textrm{NaN}\)
    • If z is \( \textrm{NaN}+i \infty\), the result is \(\pm \infty+ i \textrm{NaN}\) (the sign of the real part is unspecified)
    • If z is \( \textrm{NaN}+ i \textrm{NaN}\), the result is \( \textrm{NaN}+ i \textrm{NaN}\)
  3. Returns \(\log(z+\sqrt{1+z^2})\).

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
wide_ft ref2 = { 0.0, 1.0, 2.0, 3.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "-> asinh(zc) = " << kyosu::asinh(zc)<< std::endl
<< "-> asinh(ref2) = " << kyosu::asinh(ref2) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27