|
inlineconstexpr |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{D}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2}(t+z)^{-3/2}\;\mathrm{d}t\).
Parameters
x
, y
, z
: Can be a mix of complex and real floating values. z
must be non zerop
: floating real arguments.c
: Conditional expression masking the operation.m
: Logical value masking the operation.Return value
x
, y
, z
lie in the complex plane cut along the nonpositive real axis, with the exception that at z must be non 0