|
inlineconstexpr |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{D}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2}(t+z)^{-3/2}\;\mathrm{d}t\).
Parameters
x, y, z: Can be a mix of complex and real floating values. z must be non zerop: floating real arguments.c: Conditional expression masking the operation.m: Logical value masking the operation.Return value
x, y, z lie in the complex plane cut along the nonpositive real axis, with the exception that at z must be non 0