|
inlineconstexpr |
Computes the Carlson's elliptic integral \mathbf{R}_\mathbf{F}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t.
Parameters
x
, y
, z
: Can be a mix of complex and real floating values.c
: Conditional expression masking the operation.m
: Logical value masking the operation.Return value
x
, y
, z
lie in the complex plane cut along the nonpositive real axis, with the exception that one of x
, y
, z
must be non 0