Callable object computing euler angles from a quaternion.
This function build euler angles from a quaternion. Template parameters I, J, K of type int are used to choose the euler order.
for instance I = 3, J = 2, K = 3 choose the ZYZ sequence. the values of I, J, and K must be in {1, 2, 3} and satisfy I != J && J != K
.
#include kyosu/quaternion.hpp>`
namespace eve
{
template < int I, int J, int K >
auto to_euler(
auto q, axis<I>
const & a1, axis<J>
const & a2, axis<K>
const & a3)
noexcept
requires(I != J && J != K)
template < int I, int J, int K >
auto to_euler[extrinsic](auto q, axis<I> const & a1, axis<J> const & a2, axis<K> const & a3) noexcept
requires(I != J && J != K)
template < int I, int J, int K >
auto to_euler[intrinsic](auto q, axis<I> const & a1, axis<J> const & a2, axis<K> const & a3) noexcept
requires(I != J && J != K)
}
constexpr auto to_euler
Callable object computing euler angles from a quaternion.
Definition: to_euler.hpp:189
Parameters
q
the rotation quaternion (not necesseraly normalized)
a1
, a2
, a3
: the axis parameters to be chosen between X_, Y_, Z_ (two consecutive axes cannot be the same)
- depending of the euler order
Template parameters
- I, J, K: actual parameters can be chosen between axis values X_, Y_, Z_ from which I, J and K are deduced
Return value
- kumi tuple of the three euler angles in radian. In case of singularity the first angle is 0. extrinsic rotation order is used
- Same but in the intrinsic way
#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using e_t = float;
using we_t = eve::wide<float, eve::fixed<2>>;
using wc_t = eve::wide<kyosu::complex_t<float>, eve::fixed<2>>;
using wq_t = eve::wide<kyosu::quaternion_t<float>, eve::fixed<2>>;
std::cout << "Real: "<< "\n";
e_t e0(1);
e_t e1(2);
std::cout << e0 <<
", " << e1 <<
" -> " <<
average(e0, e1) <<
"\n";
std::cout << e0 <<
", " << e0 <<
" -> " <<
average(e0, e0) <<
"\n";
we_t we0(e0);
we_t we1(e1);
std::cout << we0 <<
", " << we1 <<
" -> " <<
average(we0, we1) <<
"\n";
std::cout << "Complex: "<< "\n";
c_t c0(1, 5);
c_t c1(5, 9);
std::cout << c0 <<
", " << c1 <<
" -> " <<
average(c0, c1) <<
"\n";
std::cout << c0 <<
", " << c0 <<
" -> " <<
average(c0, c0) <<
"\n";
wc_t wc0(c0, c1);
wc_t wc1(c1, c1);
std::cout << wc0 <<
", " << wc1 <<
" -> " <<
average(wc0, wc1) <<
"\n";
std::cout << "Quaternion: "<< "\n";
q_t q0(1, 5, 2, 3);
q_t q1(5, 9, 6, 7);
std::cout << q0 <<
", " << q1 <<
" -> " <<
average(q0, q1) <<
"\n";
std::cout << q0 <<
", " << q0 <<
" -> " <<
average(q0, q0) <<
"\n";
wq_t wq0(q0, q1);
wq_t wq1(q1, q1);
std::cout << wq0 <<
", " << wq1 <<
" -> " <<
average(wq0, wq1) <<
"\n";
std::cout << "Mixed: "<< "\n";
return 0;
}
constexpr auto average
Computes the average of the parameters.
Definition: average.hpp:62
as_cayley_dickson_n_t< 4, T > quaternion_t
Type alias for quaternion numbers.
Definition: quaternion.hpp:24
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27