Computes the Bessel functions of the first kind, \( J_{n}(x)=\sum_{p=0}^{\infty}{\frac{(-1)^p}{p!\,\Gamma (p+n +1)}}
{\left({x \over 2}\right)}^{2p+n }\) extended to the complex plane and cayley_dickson values.
It is the solution of \( x^{2}y''+xy'+(x^2-n^2)y=0\) for which \( y(0) = 0\) if \(n \ne 0\) else \(1\).
#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
size_t n = 3;
std::cout.precision(16);
std::cout << std::scientific << std::endl;
eve::wide<double, eve::fixed<4>> z(1.0, 15.0, 40.0, 60.0);
eve::wide<double, eve::fixed<4>> z1(1.0, 2.0, 40.0, 0.0), z2(36.0, 0.5, 0.0, 40.0);
return 0;
}
constexpr tags::callable_real real
Extracts the real part of a value.
Definition: real.hpp:83
constexpr tags::callable_complex complex
Constructs a kyosu::complex.
Definition: to_complex.hpp:70
constexpr tags::callable_quaternion quaternion
Constructs a kyosu::quaternion.
Definition: to_quaternion.hpp:72