kyosu v0.1.0
Complex Without Complexes
 
Loading...
Searching...
No Matches

◆ xi

kyosu::xi = eve::functor<xi_t>
inlineconstexpr

Computes the Riemann \( \displaystyle\xi(z) = \frac{1}{2}z(z-1)\pi^{-\frac{z}{2}}\Gamma(\frac{z}{2})\zeta(z)\). function or the Landau version \( \displaystyle\Xi(z) = \xi(\frac{1}{2} + i z)\).

Header file

#include <kyosu/functions.hpp>

Callable Signatures

namespace kyosu
{
//regular call
constexpr auto xi(auto z) noexcept; // 1
// Semantic modifyiers
constexpr auto xi[riemann](auto z) noexcept; // 1
constexpr auto xi[landau](T z) noexcept; // 2
}
constexpr auto xi
Computes the Riemann . function or the Landau version .
Definition: xi.hpp:76
Main KYOSU namespace.
Definition: cinf.hpp:13

Parameters

  • z : cayley-dickson like value to process.

Return value

  1. Returns the value at z of the Riemann \(\xi\) function (ξ can be used a an alias).
  2. Returns the value at z of the Landau \(\Xi\) function (Ξ can be used a an alias).

if the input z is a floating_value the call is done as if complex(z) was input.

External references

Example

#include <kyosu/kyosu.hpp>
#include <eve/wide.hpp>
#include <iostream>
int main()
{
using wide_ft = eve::wide <float, eve::fixed<4>>;
wide_ft ref1 = { 3.0f, 2.0f, 1.0f, 0.5f};
wide_ft imf1 = { 2.0f , -1.0, -5.0, 0.0};
auto zc = kyosu::complex_t<wide_ft>(ref1, imf1);
std::cout
<< "---- simd" << std::endl
<< "<- zc = " << zc << std::endl
<< "<- ref1 = " << ref1 << std::endl
<< "-> xi(zc) = " << kyosu::xi(zc) << std::endl
<< "-> xi[riemann](zc) = " << kyosu::xi[kyosu::riemann](zc) << std::endl
<< "-> xi[landau ](zc) = " << kyosu::xi[kyosu::landau] (zc) << std::endl
<< "-> ξ(zc) = " << kyosu::ξ(zc) << std::endl
<< "-> Ξ(zc) = " << kyosu::Ξ(zc) << std::endl
<< "-> xi(ref1) = " << kyosu::xi(ref1) << std::endl;
return 0;
}
as_cayley_dickson_n_t< 2, T > complex_t
Type alias for complex numbers.
Definition: complex.hpp:27