|
inlineconstexpr |
Defined in header
Parameters
n
: integral positive argument. (returns a NaN if n
does not fullfill these conditions).x
: real floating argument.alpha
, beta
: floating arguments.Return value
The Jacobi polynomials are a sequence of orthogonal polynomials relative to (1-x)^{\alpha}(1+x)^{\beta}, for \alpha and \beta greater than -1, on the [-1, +1] interval.
They can be defined via a Rodrigues formula: \displaystyle P^{\alpha, \beta}_n(x) = \frac{(-1)^n}{2^n n!}(1-x)^{-\alpha} (1+x)^{-\beta} \frac{d}{dx^n}\left\{ (1-x)^{\alpha}(1+x)^{\beta}(1-x^2)^n \right\}.