Processing math: 100%
E.V.E
v2023.02.15
 
All Classes Namespaces Functions Variables Typedefs Enumerations Friends Modules Pages Concepts
Loading...
Searching...
No Matches

◆ inc

eve::inc = functor<inc_t>
inlineconstexpr

Header file

#include <eve/module/core.hpp>

Callable Signatures

namespace eve
{
// Regular overload
constexpr auto inc(value auto x) noexcept; // 1
// Lanes masking
constexpr auto inc[conditional_expr auto c](value auto x) noexcept; // 2
constexpr auto inc[logical_value auto m](value auto x) noexcept; // 2
// Semantic options
constexpr auto inc[saturated](value auto x) noexcept; // 3
constexpr auto inc[lower](value auto x) noexcept; // 4
constexpr auto inc[upper](value auto x) noexcept; // 5
constexpr auto inc[lower][strict](value auto x) noexcept; // 4
constexpr auto inc[upper][strict](value auto x) noexcept; // 5
}
Specifies that a type is a Conditional Expression.
Definition: conditional.hpp:28
The concept logical_value<T> is satisfied if and only if T satisfies eve::value and the element type ...
Definition: value.hpp:132
The concept value<T> is satisfied if and only if T satisfies either eve::scalar_value or eve::simd_va...
Definition: value.hpp:34
constexpr auto inc
elementwise_callable object returning the input incremented by 1.
Definition: inc.hpp:83
EVE Main Namespace.
Definition: abi.hpp:18

Parameters

Return value

  1. The value of x + 1 is returned.
  2. The operation is performed conditionnaly.
  3. The saturated incrementation of x. More specifically, for signed integral, inc[saturated](valmax(as<T>{})) returns eve:valmax(as<T>{}))
  4. The increment is computed in a 'round toward -\infty mode. The result is guaranted to be less or equal to the exact one (except for Nans). Combined with strict the option ensures generally faster computation, but strict inequality.
  5. The increment is computed in a 'round toward \infty mode. The result is guaranted to be greater or equal to the exact one (except for Nans). Combined with strict the option ensures generally faster computation, but strict inequality.

Example

// revision 0
#include <eve/module/core.hpp>
#include <iostream>
#include <iomanip>
int main()
{
auto sml = eve::smallestposval(eve::as(1.0));
eve::wide wf0{sml, -sml, 2.0, 3.0, -1.0, -2.0, -3.0, -4.0};
eve::wide wi0{0, 1, 2, 3, -1, -2, -3, -4};
eve::wide wu0{0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u};
std::cout << "<- wf0 = " << wf0 << "\n";
std::cout << "<- wi0 = " << wi0 << "\n";
std::cout << "<- wu0 = " << wu0 << "\n";
std::cout << "-> inc(wf0) = " << eve::inc(wf0) << "\n";
std::cout << "-> inc[ignore_last(2)](wf0) = " << eve::inc[eve::ignore_last(2)](wf0) << "\n";
std::cout << "-> inc[wf0 != 0](wf0) = " << eve::inc[wf0 != 0](wf0) << "\n";
std::cout << "-> inc(wu0) = " << eve::inc(wu0) << "\n";
std::cout << "-> inc[ignore_last(2)](wu0) = " << eve::inc[eve::ignore_last(2)](wu0) << "\n";
std::cout << "-> inc[wu0 != 0](wu0) = " << eve::inc[wu0 != 0](wu0) << "\n";
std::cout << "-> inc[saturated](wu0) = " << eve::inc[eve::saturated](wu0) << "\n";
std::cout << "-> inc(wi0) = " << eve::inc(wi0) << "\n";
std::cout << "-> inc[ignore_last(2)](wi0) = " << eve::inc[eve::ignore_last(2)](wi0) << "\n";
std::cout << "-> inc[wi0 != 0](wi0) = " << eve::inc[wi0 != 0](wi0) << "\n";
std::cout << "-> inc[saturated](wi0) = " << eve::inc[eve::saturated](wi0) << "\n";
std::cout << std::setprecision(20) << "-> inc[lower](wf0) = " << eve::inc[eve::lower](wf0) << "\n";
std::cout << std::setprecision(20) << "-> inc[upper](wf0) = " << eve::inc[eve::upper](wf0) << "\n";
std::cout << std::setprecision(20) << "-> inc[lower][strict](wf0) = " << eve::inc[eve::lower][eve::strict](wf0) << "\n";
std::cout << std::setprecision(20) << "-> inc[upper][strict](wf0) = " << eve::inc[eve::upper][eve::strict](wf0) << "\n";
}
constexpr auto smallestposval
Computes the smallest normal positive value.
Definition: smallestposval.hpp:70
Lightweight type-wrapper.
Definition: as.hpp:29
Conditional expression ignoring the k last lanes from a eve::simd_value.
Definition: conditional.hpp:307
Wrapper for SIMD registers.
Definition: wide.hpp:93