E.V.E
v2023.02.15
 
Loading...
Searching...
No Matches

◆ lrising_factorial

auto eve::lrising_factorial = functor<lrising_factorial_t>
inlineconstexpr

Header file

#include <eve/module/special.hpp>

Callable Signatures

namespace eve
{
// Regular overload
template<typename I, typename T> constexpr as_wide_as_t<T, I> lrising_factorial(I a, T x) noexcept; // 1
// Lanes masking
constexpr auto lrising_factorial[conditional_expr auto c](/*any of the above overloads*/) noexcept; // 2
constexpr auto lrising_factorial[logical_value auto m](/*any of the above overloads*/) noexcept; // 2
// Semantic options
constexpr auto lrising_factoriale[raw]/*any of the above overloads*/) noexcept; // 3
constexpr auto lrising_factorialee[pedantic](/*any of the above overloads*/) noexcept; // 4
}
Specifies that a type is a Conditional Expression.
Definition conditional.hpp:28
The concept logical_value<T> is satisfied if and only if T satisfies eve::value and the element type ...
Definition value.hpp:132
constexpr auto lrising_factorial
elementwise_callable object computing the natural logarithm of the rising Factorial function i....
Definition lrising_factorial.hpp:88
EVE Main Namespace.
Definition abi.hpp:18

Parameters

Return value

  1. The value of the natural logarithm of the rising_factorial is returned( a and x must be strictly positive).
  2. The operation is performed conditionnaly.
  3. The raw option uses the crude formula with all its limitations and inacurracies and return a Nan if a and a+x are not both positive.
  4. The pedantic option uses reflection tricks and computes the function for all real a and x, and in fact computes the logarithm of the absolute value of the Pochammer symbol \(\log\left|\frac{\Gamma(x+a)}{\Gamma(x)}\right|\) returning nan only if the result is really undefined.

External references

Example

#include <eve/module/special.hpp>
#include <eve/wide.hpp>
#include <iostream>
#include <iomanip>
int main()
{
w32_t n = {1, 2, -3, 7};
wf_t x = {1.0f, 1.5f, 2.0f, 2.5f};
std::cout << "---- simd" << std::setprecision(17) << '\n'
<< " <- n = " << n << '\n'
<< " <- x = " << x << '\n'
<< " -> lrising_factorial(n, x) = " << eve::lrising_factorial(n, x) << '\n';
double xi = 1.8;
std::cout << "---- scalar" << '\n'
<< " xi = " << xi << '\n'
<< " -> lrising_factorial(7, xi) = " << eve::lrising_factorial(7, xi) << '\n';
return 0;
}
Wrapper for SIMD registers.
Definition wide.hpp:70