|
inlineconstexpr |
Defined in header
Parameters
n
: integral positive argument.x
: real floating argument.alpha
, beta
: floating arguments.Return value
The Jacobi polynomials are a sequence of orthogonal polynomials relative to \((1-x)^{\alpha}(1+x)^{\beta}\), for \(\alpha \) and \(\beta \) greater than -1, on the \([-1, +1]\) interval.
They can be defined via a Rodrigues formula: \(\displaystyle P^{\alpha, \beta}_n(x) = \frac{(-1)^n}{2^n n!}(1-x)^{-\alpha} (1+x)^{-\beta} \frac{d}{dx^n}\left\{ (1-x)^{\alpha}(1+x)^{\beta}(1-x^2)^n \right\}\).