E.V.E
v2023.02.15
 
Loading...
Searching...
No Matches
Inverse hyperbolic

Detailed Description

These functions allows performing unverse hyperbolic computations

Variables

constexpr auto eve::acosh = functor<acosh_t>
 elementwise_callable object computing \(\log(x+\sqrt{x^2-1})\).
 
constexpr auto eve::acoth = functor<acoth_t>
 elementwise_callable object computing the inverse hyperbolic cotangent.
 
constexpr auto eve::acsch = functor<acsch_t>
 elementwise_callable object computing the inverse hyperbolic cosecant, \(\log(1/x+\sqrt{1/x^2+1})\).
 
constexpr auto eve::agd = functor<agd_t>
 elementwise_callable object computing the inverse gudermannian, i.e. \(2\tanh(\tan(x/2))\).
 
constexpr auto eve::asech = functor<asech_t>
 elementwise_callable object computing the inverse hyperbolic secant: \(\log(1/x+\sqrt{1/x^2-1})\).
 
constexpr auto eve::asinh = functor<asinh_t>
 elementwise_callable object computing the inverse hyperbolic sine : \(\log(x+\sqrt{x^2+1})\).
 
constexpr auto eve::atanh = functor<atanh_t>
 elementwise_callable object computing the inverse hyperbolic tangent.