These functions allows performing unverse hyperbolic computations
Variables | |
constexpr auto | eve::acosh = functor<acosh_t> |
elementwise_callable object computing \(\log(x+\sqrt{x^2-1})\). | |
constexpr auto | eve::acoth = functor<acoth_t> |
elementwise_callable object computing the inverse hyperbolic cotangent. | |
constexpr auto | eve::acsch = functor<acsch_t> |
elementwise_callable object computing the inverse hyperbolic cosecant, \(\log(1/x+\sqrt{1/x^2+1})\). | |
constexpr auto | eve::agd = functor<agd_t> |
elementwise_callable object computing the inverse gudermannian, i.e. \(2\tanh(\tan(x/2))\). | |
constexpr auto | eve::asech = functor<asech_t> |
elementwise_callable object computing the inverse hyperbolic secant: \(\log(1/x+\sqrt{1/x^2-1})\). | |
constexpr auto | eve::asinh = functor<asinh_t> |
elementwise_callable object computing the inverse hyperbolic sine : \(\log(x+\sqrt{x^2+1})\). | |
constexpr auto | eve::atanh = functor<atanh_t> |
elementwise_callable object computing the inverse hyperbolic tangent. | |