This module provides implementation for scalar and SIMD versions of elliptic functions.
Convenience header:
Variables | |
constexpr auto | eve::ellint_1 = functor<ellint_1_t> |
elementwise_callable object computing the elliptic integrals of the first kind. | |
constexpr auto | eve::ellint_2 = functor<ellint_2_t> |
elementwise_callable object computing the elliptic integrals of the second kind. | |
constexpr auto | eve::ellint_d = functor<ellint_d_t> |
elementwise_callable object computing the \(\mbox{D}\) elliptic integral. | |
constexpr auto | eve::ellint_rc = functor<ellint_rc_t> |
elementwise_callable object computing the degenerate Carlson's elliptic integral \( \mathbf{R}_\mathbf{C}(x, y) = \frac12 \int_{0}^{\infty}
\scriptstyle(t+x)^{-1/2}(t+y)^{-1}\scriptstyle\;\mathrm{d}t\). | |
constexpr auto | eve::ellint_rd = functor<ellint_rd_t> |
elementwise_callable object computing the Carlson's elliptic integral \( \mathbf{R}_\mathbf{D}(x, y) = \frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2}
(t+z)^{-3/2}\scriptstyle\;\mathrm{d}t\). | |
constexpr auto | eve::ellint_rf = functor<ellint_rf_t> |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{F}(x, y) =
\frac32 \int_{0}^{\infty} \scriptstyle[(t+x)(t+y)]^{-1/2}
(t+z)^{-3/2}\scriptstyle\;\mathrm{d}t\). | |
constexpr auto | eve::ellint_rg = functor<ellint_rg_t> |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{G}(x, y) = \frac1{4\pi} \int_{0}^{2\pi}\int_{0}^{\pi}
\scriptstyle\sqrt{x\sin^2\theta\cos^2\phi
+y\sin^2\theta\sin^2\phi
+z\cos^2\theta} \scriptstyle\;\mathrm{d}\theta\;\mathrm{d}\phi\). | |
constexpr auto | eve::ellint_rj = functor<ellint_rj_t> |
Computes the Carlson's elliptic integral \( \mathbf{R}_\mathbf{J}(x, y) = \frac32 \int_{0}^{\infty}
\scriptstyle(t+p)^{-1}[(t+x)(t+y)(t+z)]^{-1/2}\scriptstyle\;\mathrm{d}t\). | |