It is a solution of \( x^{2}y''+2xy'+(x^2-n(n+1))y=0\) for which \( y(0) = -\infty\)
{
template<value N,
floating_value T>
constexpr as_wide_as_t<T,N>
cyl_bessel_yn(N n, T x)
noexcept;
}
Specifies that a type is a Conditional Expression.
Definition conditional.hpp:28
The concept floating_value<T> is satisfied if and only if T satisfies eve::value and the element type...
Definition value.hpp:116
The concept logical_value<T> is satisfied if and only if T satisfies eve::value and the element type ...
Definition value.hpp:132
The concept value<T> is satisfied if and only if T satisfies either eve::scalar_value or eve::simd_va...
Definition value.hpp:34
constexpr auto cyl_bessel_yn
elementwise_callable object computing the Bessel functions of the second kind, .
Definition cyl_bessel_yn.hpp:80
constexpr auto sph_bessel_yn
Computes the the spherical Bessel functions of the second kind of order n, .
Definition sph_bessel_yn.hpp:78
EVE Main Namespace.
Definition abi.hpp:18
The value of \( \displaystyle y_{n}(x)=
(-x)^n\left(\frac1x\frac{d}{dx}\right)^n \frac{\cos x}x\) is returned.
#include <eve/module/bessel.hpp>
#include <iostream>
int main()
{
eve::wide x{0.5, 1.5, 0.1, 1.0, 19.0, 25.0, 21.5, 10000.0};
std::cout << "<- wf = " << wf << "\n";
std::cout << "<- wu = " << wu << "\n";
std::cout << "<- n = " << n << "\n";
std::cout << "<- x = " << x << "\n";
std::cout <<
"-> sph_bessel_yn[wu != 2u](wu, wf) = " <<
eve::sph_bessel_yn[wu != 2u](wu, wf) <<
"\n";
}
Conditional expression ignoring the k last lanes from a eve::simd_value.
Definition conditional.hpp:332
Wrapper for SIMD registers.
Definition wide.hpp:70