This module provides implementation for the Bessel functions and related operations.
Required header:
Variables | |
constexpr auto | eve::airy = functor<airy_t> |
elementwise_callable object computing simutaneously the airy functions values \( Ai(x)\) and \( Bi(x)\). | |
constexpr auto | eve::airy_ai = functor<airy_ai_t> |
elementwise_callable object computing the airy function \( Ai(x)\). | |
constexpr auto | eve::airy_bi = functor<airy_bi_t> |
elementwise_callable object computing the airy function \( Bi(x)\). | |
constexpr auto | eve::cyl_bessel_i0 = functor<cyl_bessel_i0_t> |
elementwise_callable object computing the modified Bessel function of the first kind, \( I_0(x)=\frac1{\pi}\int_{0}^{\pi}e^{x\cos\tau}\,\mathrm{d}\tau\). | |
constexpr auto | eve::cyl_bessel_i1 = functor<cyl_bessel_i1_t> |
elementwise_callable object computing the modified Bessel function of the first kind, \( I_1(x)=\frac1{\pi}\int_{0}^{\pi}e^{x\cos\tau}\cos\tau\,\mathrm{d}\tau\). | |
constexpr auto | eve::cyl_bessel_in = functor<cyl_bessel_in_t> |
elementwise_callable object computing the modified Bessel functions of the first kind, \( I_{n}(x)=\left(\frac12z\right)^n\sum_{k=0}^{\infty}{\frac{(x^2/4)^k}
{k!\,\Gamma (k+n +1)}}\). | |
constexpr auto | eve::cyl_bessel_j0 = functor<cyl_bessel_j0_t> |
elementwise_callable object computing the Bessel function of the first kind, \( J_0(x)=\frac1{\pi }\int _{0}^{\pi}\cos(x\sin \tau)
\,\mathrm {d} \tau \). | |
constexpr auto | eve::cyl_bessel_j1 = functor<cyl_bessel_j1_t> |
elementwise_callable object computing the Bessel function of the first kind, \( J_1(x)=\frac1{\pi }\int _{0}^{\pi}\cos(\tau-x\sin \tau )\,\mathrm {d} \tau \). | |
constexpr auto | eve::cyl_bessel_jn = functor<cyl_bessel_jn_t> |
elementwise_callable object computing the Bessel functions of the first kind, \( J_{n}(x)=\sum_{p=0}^{\infty}{\frac{(-1)^p}{p!\,\Gamma (p+n +1)}}
{\left({x \over 2}\right)}^{2p+n }\). | |
constexpr auto | eve::cyl_bessel_k0 = functor<cyl_bessel_k0_t> |
elementwise_callable object computing the modified Bessel function of the second kind, \( K_0(x)=\int_{0}^{\infty}\frac{\cos(x\tau)}
{\sqrt{\tau^2+1}}\,\mathrm{d}\tau\). | |
constexpr auto | eve::cyl_bessel_k1 = functor<cyl_bessel_k1_t> |
elementwise_callable object computing the modified Bessel function of the second kind, \( K_1(x)=\int_{0}^{\infty} e^{-x \cosh \tau} \cosh \tau\,\mathrm{d}\tau\). | |
constexpr auto | eve::cyl_bessel_kn = functor<cyl_bessel_kn_t> |
elementwise_callable object computing the modified Bessel function of the second kind, \( K_n(x)=\frac{\Gamma(n+1/2)(2x)^n}{\sqrt\pi} \int_{0}^{\infty}\frac{\cos\tau}
{(\tau^2+x^2)^{n+1/2}}\,\mathrm{d}\tau\). | |
constexpr auto | eve::cyl_bessel_y0 = functor<cyl_bessel_y0_t> |
elementwise_callable object computing the Bessel function of the second kind, \( Y_0(x)=\frac2{\pi}\int_{1}^{\infty}\frac{\cos x\tau}
{\sqrt{\tau^2-1}}\,\mathrm {d} \tau\). | |
constexpr auto | eve::cyl_bessel_y1 = functor<cyl_bessel_y1_t> |
elementwise_callable object computing the Bessel function of the second kind, \( Y_1(x)=\frac2{\pi}\int_{1}^{\infty}\frac{\cos x\tau}
{(\tau^2-1)^{3/2}}\,\mathrm{d}\tau\). | |
constexpr auto | eve::cyl_bessel_yn = functor<cyl_bessel_yn_t> |
elementwise_callable object computing the Bessel functions of the second kind, \( Y_{n}(x)=\frac{2(z/2)^{-n}}{\sqrt\pi\, \Gamma(1/2-n)}\int _{1}^{\infty}\frac{\cos x\tau}
{(\tau^2-1)^{n+1/2}}\,\mathrm {d} \tau \). | |
constexpr auto | eve::sph_bessel_j0 = functor<sph_bessel_j0_t> |
Computes the spherical Bessel function of the first kind and order 0, that is \( j_0(x) = \sqrt{\frac\pi{2x}}J_{1/2}(x)\) ,. | |
constexpr auto | eve::sph_bessel_j1 = functor<sph_bessel_j1_t> |
Computes the spherical Bessel function of the first kind of order 1,. | |
constexpr auto | eve::sph_bessel_jn = functor<sph_bessel_jn_t> |
Computes the spherical Bessel functions of the first kind of order n, \( j_{n}(x)= \sqrt{\frac\pi{2x}}J_{n+1/2}(x)\). | |
constexpr auto | eve::sph_bessel_y0 = functor<sph_bessel_y0_t> |
Computes the spherical Bessel function of the second kind of order 0, \( y_{0}(x)= \sqrt{\frac\pi{2x}}Y_{1/2}(x) \). | |
constexpr auto | eve::sph_bessel_y1 = functor<sph_bessel_y1_t> |
Computes the spherical Bessel function of the second kind of order 1, \( y_{1}(x)= \sqrt{\frac\pi{2x}}Y_{3/2}(x) \). | |
constexpr auto | eve::sph_bessel_yn = functor<sph_bessel_yn_t> |
Computes the the spherical Bessel functions of the second kind of order n, \( y_{n}(x)= \sqrt{\frac\pi{2x}}Y_{n+1/2}(x)\). | |